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AbslracL We consider periodic stmclures made of spheres embedded in a host mate- 
rial with a different dielectric function. We show how to calculate the reflection and 
transmission of electromagnetic waves bj a slab of the material parallel to a given nys- 
tallographic plane. ?he method of calculation is based an a doubling-layer scheme which 
oblmins the refleclion and transmission matrix elements for the mullilayer from thase of 
a single layer. The reflection and lransmision characleristics of die slab are related to 
the mmplex band structure of lhe photon field associated wilh lhe given aystallographic 
plane of the mmponding infinite crystal, which is introduced in the manner of the 
lowenergy electron diffraction theory. We present numerical resulll which demonstrate 
the appliCabi1iIy of the method to real systems of currenl interesl and point out mme 
interesting physics which arose fmm our Calculations. We show in particular that lhe 
non-degenerate tends of the photon field at the centre of the surface Brillouin zone do 
not couple to Ihe incident radiation, leading lo total reflection at normal incidence. 

1. Introduction 

The optical roperties of films consisting of small metallic particles, of approximate 
radius 100 1 embedded in a dielectric host material (the composite medium is 
often called a cermet) are of interest for a variety of reasons, not least of which 
are possible technological applications, eg. in the coating of solar energy absorbers 
111. Theoretical treatments of this problem based on the Maxwell Garnett [2] theory 
and extensions of it [3] fail when the interparticle distance becomes comparable 
with the wavelength of the incident radiation. W e n  this is the case or when the 
fractional volume occupied by the metallic particles exceeds 50% or so, a proper 
solution to Maxwell's equations becomes necessary. Lamb er a1 [4] showed that the 
eigenmodes of the electromagnetic (EM) field (propagating monochromatic waves) in 
the composite medium can be calculated by Korringa-Kohn-Rostoker (KKR) methods, 
the problem being analogous to the calculation of the energy band structure of 
electrons in ordinary crystals. When the particles distributed in the host material 
of the composite medium ark not identical and/or the arrangement of the particles 
in space is not periodic, the calculation is complicated further for the same reasons 
as in the corresponding electronic problem [4]. However, in many cases, when the 
disorder is weak, a good approximation can be obtained through an effective crystal 
appropriately defined as in the average T-matrix (ATA) [SI or the coherent-potential 
approximation (CPA) methods [6]. 

0953-8984/92~67389t12$04.50 0 1992 IOP Publishing Lld 7389 



7390 N Stefanou et ai 

Morc recently, interest has focused on the optical properties of materials, con- 
sisting of spheres in a host material with a different dielectric function, following the 
suggestion by Yablonovitch [7l that such systems may have important technological 
applications. These would arise, according to Yablonovitch, from the existence of 
gaps in the eigenfrequency spectrum of the EM field within such a crystal, which in 
turn would mean that spontaneous emission would not be possible in such an envi- 
ronment. He pointed out the importance of this phenomenon in relation to many 
scmiconductor devices and he proceeded to demonstrate the reality of EM (so-called 
photonic) gaps in crystalline composites by actually constructing such a crystal [SI. 

Calculations of the eigenmodes (frequency band structure) of the EM field in a 
crystalline structure have been prescnted by a number of workers [9] based on a 
plane-wave expansion of the EM field in the medium. These calculations are very 
useful in so far as they demonstrate the existence or otherwise of photonic gaps in a 
particular structure but they do not describe an actual experiment, i.e. thc reflection 
and transmission of light by a slab of the material. In the present paper we show 
how this can be done in a relatively straightforward manner using the mathematical 
concepts of low-energy electron diffraction (LEED) theory. These are the photonic 
complex band structure associated with a given surface (crystallographic plane) of the 
composite crystal, and the doubling-layer method for the evaluation of the reflection 
and transmission matrix elements of a multilayer of the composite material beginning 
from those of a single layer. 

In our earlier work [lo, 111 we have shown how to calculate the matrix elements 
describing the scattering of EM waves by a plane of spheres. In section 2 of Ihe 
present paper we show how these can be used to calculate the photonic complex 
band structure associated with a given surface of the crystal and in the calculation 
of scattering by multilayers. In section 3 we demonstrate the applicability of the 
method by applying it to specific examples and point out some interesting physics 
made apparent after our calculations. 

2. Theory 

In our previous article [l l]  we have derived explicit expressions for the matrix ele- 
ments which describe the scattering of a plane EM wave by a single layer of spheres. 
The spheres are centred on the sites {Rn) of a two-dimensional lattice in the z y  
plane, i.e. 

R, = nlal + n2a2 (1) 
where al and a, are primitive vectors in the r-y plane and n l r  n2 = 0,*1,12,. . .. 
We assume that the spheres which do not overlap each other have the same radius 
S and permittivity cU(w). 

A plane EM wave incident on the layer of spheres is characterized by its frequency 
w and its wavevector qll = IC, ,  + g, where k is a reduced wavevector in the surface 
Brillouin zone (sBZ) of the two-dimensional reciprocal lattice of (1) and g is one of 
the reciprocal vectors of this lattice. Wc may, therefore, wite the incident plane wave 
as 

11 . 
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Figure 1. A composite oystal as a slack of succes- 
sive layem parallel to a uy;tallogrspluc plane. 

where IC = (pLoc) l /zw is the wavenumber and we have assumed that the permeability 
equals the permeability po of vacuum. We omit the time factor exp(-iwt) and 
imply, as usual, that the actual field is the real part of the written quantity. We shall 
also omit writing the associated magnetic field. The three components of the electric 
field vector i = z,y,z are determined from the magnitude and the polarization 
direction of the field associated with the given beam g. The superscript s = f or 
- corresponds to a wave incident on the scatterers from the left or from the right 
respectively. 

In what follows the incident field is usually a sum of terms (2) corresponding to 
various g beams but of the same kll and w. The corresponding scattered wave is also 
a superposition of plane waves, each of which can be written as 

[E& exp[iKl . T] (4) 

where the s = + and s = - sign on I< are used for z > 0 and z < 0, respectively. 
We have 

which define the scattering matrix elements M&,i,. Explicit expressions for these 
elements have been given in [ll]. 

21. Photonic compla band struclure 

A multilayer is constituted as a stack of identical layers parallel to the z-y plane, so 
that the (n  + 1)th layer along the positive z direction is obtained from the nth layer 
by a simple translation described by a vector a3 (figure 1). When the stack of layers 
extends over all space (from z = -CO to z = CO), we have an infinite crystal and 
{al, a2, a3} is a set of primitive vectors for this crystal. 
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The reduced k zone of the corresponding reciprocal space is ( k i i , k z )  where 
kIi = ( k , ,  k g )  extends over the snz of the plane under consideration and - lb , ) /2  < 
k,  < Ib31/2 where b, E 27ra, x u2/ul  . (a2 x u3). The complex band structure of 
the EM ficld associated with the given surface is obtained in the same manner as for 
the Schriidinger wave field of electrons in an ordinaly crystal. The eigenmodes are 
in both cases generalized Bloch waves of frequency w and reduced wavevector kl, 
parallel to the surface. 

In the region of host space between the nth and the (n + 1)th layers of spheres 
the wave field of given w and kil has the form 

x { E i ( n ) e x p [ i K :  ~ ( T - A , ) ]  f E;(n)exp[iK; . ( . - A , ) ] }  (6) 
9 

where A,, is the midpoint between the nth and the (n  + 1)th layer (see figure 1). 

the scattering properties of the nth layer. Onc can easily see that 
The vector coefficients E:(%) are related to the E:(n+ 1) coefficients through 

Q ; ~ , ~ ,  = exp [-(i/2) (K; + K;) . u3] ~g;;,;, 

Q ; ; ~ ~ ~ ,  = exp [-(i/2) ( K ;  - K;) . a3] M;;:,+ 

Q::~,~, = exp [ .  (1/2) ( KJ + KJ) - U 3 ]  MA;,+ 

Q;;~ ,~ ,  = exp (1/2) K; - K;) .a3] M L ; , ~ , .  1 .  ( 
The phase factors in the above equations arise from the fact that the waves in (6) 

refer to an origin half-way between two successive layers whereas the matrix elements 
in (5 )  were calculated with the origin of coordinates at the centre of the layer. 

Now it is in the nature of a generalized Bloch wave that 

E i ( n +  1 )  = e x p ( i k : a 3 ) E i ( n )  (9) 

k =  (kIi,k,(w;Cii)) (10) 

where k ,  is a function of w and Itll, to be determined for each of the modes of the 
EM field in the given crystal. 

Substitution of equation (9) into equation (7) leads after some algebra, to the 
following system of equations: 

] [ E-E;J:)l)] 
Q++ Qf - 

-[Q--]-lQ-fQ+S [Q--]-’[l- Q - + Q + - ]  
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where E* are column vectors with the components E:,=, E i y ,  E:,s, E:2z, 
E:%,, . . .. In practice we keep N g-vectors in the calculation (those of smallest 
magnitude) in which case E* are vectors with 3N components. The enumeration of 
g-vectors implied in the definition of E* allows us to write the Q-matrix elements 
in compact form as matrices Qtt, Qt-, etc, each of which has 3N x 3N elements; 
I is the 3 N  x 3N unit matrix. This means that we have in (11) a system of GN 
homogeneous equations with 6 N unhowns. Equation (11) is the EM field equivalent 
to McRae’s equation for the Schrodinger wave field of an electron in a crystal [12, 131. 
We note that for given kll and w we obtain GN eigenvalues of k, from the solvability 
condition of equation (11). Looked upon as functions of w ,  these define, for each 
k , 6N different lines k,(w;kll) in the complex k,-space. The general properties 
o F these real frequency lines (which is what they are called) are known from the 
corresponding electron problem [14] but will not concern us here. It is sufficient 
for our purposes to ObSeNe that, for given kll and w, none or at best very few of 
the corresponding eigenvalues of k,  are real, the rest being complex. We note that, 
because the solvability condition of (11) determines a value for exp(ik.a3), values of 
k, differing by an integral multiple of lb31 correspond to the same eigenmode which 
establishes the required periodicity of the band structure in kspace. We must also 
bear in mind that only solutions with an associated electric field of zero divergence 
are of physical interest. One third of the eigensolutions do not satisfy this condition 
and we drop them. Of the remaining we have a limited number, as we have already 
mentioned, of propagating waves which correspond to real values of k2, and the rest 
are evanescent waves which correspond to complex d u e s  of k,. These have an 
amplitude which increases exponentially in the positive or negative z direction and 
do not exist as physical entities in an infinite crystal. 

A region of frequencies over which propagating waves do not exist for a given 
kl, constitutes a frequency gap in the EM field, for the given kll. If the crystal is 
not infinite (it never is) but of finite extension in the z direction, the transmission of 
EM waves with w within a gap is determined essentially by the eigenmode with the 
smallest imaginary component of k,. 

More important are regions of frequency over which no propagating Bloch waves 
exist whatever the value of kll. These may be thought of as absolute gaps in the 
frequency spectrum of the EM field. 

We shall comment further on aspects of the complex band structure of the EM 
field after we present some numerical results in section 3. 

22. Scattering of right by multilayers 

Knowledge of the complex band structure of the EM field associated with a given 
surface of a crystal provides us with the means to calculate the scattering of the EM 
wave of given w and qll = kll + g from this surface when the crystal occupies the 
half-space from z = -CO to z = 0. This is achieved by matching the EM field on 
the vacuum side of the interface ( z  > 0) which consists of the incident plus reflected 
beams propagating or decaying as z - CO to the EM field inside the crystal which 
we write as a superposition of Bloch waves propagating or decaying away from the 
surface ( z  i -CO). Matching at the interface (z  = 0) means in this case that the 
unknown coeficients in the sums which describe the EM field on either side of the 
interface are determined through the requirement that the tangential component of 
the electric and magnetic field be continuous across the interface. Otherwise the 
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Figure 2 n e  Q-matrix elements for WO successive layen are obtained from those of 
the individual layen (schematic description). 

procedure is completely analogous to that in E E D  theory. 
Similarly we can calculate the transmission and reflection of EM waves through a 

multilayer, a slab of the crystal infinite in the I-y direction but of finite extension 
along the z direction. For an EM wave incident from the left, the field on the left- 
hand side of the slab consists of the incident plus reflected beams. On the  right-hand 
side of the slab the EM field consists of transmitted beams propagating or decaying as 
z - m. Inside the slab it is a superposition of Bloch waves propagating or decaying 
in either direction. Matching of the EM field at both surfaces of the slab determines 
the amplitude of the rcflected and the transmitted beams. 

The above procedure may be efficient when we are dealing with multilayers or 
indeed with reflection from an infinite crystal. When the multilayer consists of a few 
layers, as it does in the experiment of Yablonovitch and Gmittcr [SI, an alternative 
method [12, 131 may be used to calculate the reflection and transmission matrix 
elements of the multilayer. The method avoids altogether the calculation of the 
complex band structure of the EM field and proceeds to the calculation of the matrix 
elements of the multilayer as follows. We combine the matrix elements of two 
successive single layers as shown schematically in figure 2 to obtain those of the double 
layer. The notation used is as follows. The matrices Q+f, Q+- ,  Q-f  and Q--  for 
the first layer are denoted by Q1(l ) ,  Q r 1 ( 1 ) ,  Q1ll(l) and Q'v(l), respectively, the 
corresponding matrices for the second layer are denoted by Q1(2), Q'I(2),  etc. All 
matrices refer of course to the same w and and the waves are expressed with 
respect to the origins defined in each region as UI figure 1. For example, the waves 
incident from the left on the double layer rcfcr to an origin which lies where the 
midpoint would be between the first layer and that preceding it in the corresponding 
infinite crystal. The details of the method can be found elsewhere [13]. It is easily 
shown that 

Q'(12) = Q1(2)[l -Q"(1)Q'"(2)]-1Q'(1) 
Q"(l2) = Q1(2)Q"(l)[l - Q11'(2)Q11(l)]- 1 Q I V  (2) t Q"(2 )  

(12) 
Q " ' ( 1 2 )  = Q1v(l)Q"'(2)[l - Qr1(l)Q111(2)]-'Q1(l) + Q " ' ( 1 )  

Q"(12) = Q"(l)[I - Q1'1(2)Q11(l)]-1Q1v(2) 

where the argument 12 refers to the Q-matrices of the two layers. It is obvious that 
we can repeat the process to obtain the matrix elements of four layers, then those of 
eight layers and so on. We should also emphasize that the method applies equally 
well (at the expense of further computation) to multilayers constituted from different 
single layers as long as they have the same periodic structure (that of equation (1)) 
parallel to the r-y plane. 
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3. Numerical results and discussion 

We calculated the complex band structure of the EM field for the (001) face of a 
FCC crystal, with lattice constant a, of dielectric spheres (one per lattice site) in 
vacuum. The non-overlapping sphere with a radius S = 0.4d, where d = a / f i  
denotes the distance between first neighbours, occupy 37.91% of the crystal space. 
The refractive index of the spheres, rz = 3.06, is that of polycrystalline A,O, used 
in the experiments of Yablonovitch and Gmitter IS]. 

The M-matrix elements in (5) are obtained through an angular momentum ex- 
pansion with a cut-off at I,, = 5 which gives good convergence [ll]. As to the 
number N of g-vectors required in the description of layer scattering, we find that 
N = 9 yields results accurate to better than 1% in all cases. 

We show the real frequency lines for fill = (O,O), associated with normal in- 
cidence, in figure 3, and those for a general point of the SBZ-We have taken 
kII = ( 2 n / a ) f i  (0.2, O.l)-associated with incidence at an angle, in figure 4. We 
present only those lines which over frequency regions have k,(w; kll) real. These fre- 
quency regions constitute the equivalent of the energy bands in the electronic energy 
band structure of ordinary crystals. We refer to them as frequency bands of the EM 
field in the composite crystal or, simply, as frequency bands of the photon field. For 
clarity in the presentation we do not show the complex k, sections of all the lines in 
figures 3 and 4. It is not important for our purposes to identify a particular line as 
it develops in the complex k,-space with increasing w. The parts of the complex kz 
lines that we show are those which determine the attenuation of the EM field in the 
respective frequency gaps. The imaginary part of ! e * ( ~ ; k , ~ ) ,  shown by dotted cul~es 
in the figures, is drawn to the same scale as the rest of the figure. The real part of 
the complex k, is not shown. Because the (001) plane is a plane of symmetry of the 
crystal, the solutions (Bloch waves) appear in pairs: kz(w;kl1) and - k z ( w ; k l , ) ;  in 
the figures we show those with Re{k,(w; kS)} 2 0. We should also point out that the 
way that the results are presented-plotting wa/c, where c is the velocity of light, 
against kZa/2?r-renders them applicable to different ranges of frequency of the EM 
field, provided that the size of the unit cell is scaled accordingly. 

kza/2n Transmittance 

Figure 3. The photonic complex band Structure at the Centre of the SBZ of a (CQl) 
surface of a PCC composite crystal, logether with the mrresponding transmittance curve 
of a slab of eight layen parallel 10 [lie same surface. The aystal is constituted of spheres 
of dielectric constant LM = 9.3636 in vacuum with a wlume coverage b = 0.3791. 
?he transmillance a w e  of a homogeneous slab with T = 2.16 is shown ty the dotted 
C U N C  
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3 %?l kza12n 0.3791. 

Flgum A n e  photonic complex band smclure 
assodated with the (001) surface of a FCC composite 
ctystal for kil = ( ~ r r / n ) f i  (0.2, 0.1). ?he aystal 
is constituted of spheres of dielectnc constant f M = 

0 oa oa 9.3636 in vacuum wilh a volume coverage b = 

We now comment on the results shown in figures 3 and 5. The lowest band 
behaves in the long-wavelength limit ( k  -, 0) as we expect. In this limit we can 
replace the crystal by a uniform medium with an effective dielectric constant T given 
by 131 

(F- € ) / ( 5 +  2€)  = b ( € M  - E ) / ( € M  f 2c) (13) 

where b is the fractional volume occupied by the spheres. In our case, b = 0.3791, 
c = 1, eM = 9.3636 and, therefore, equation (13) gives T = 2.16, with a correspond- 
ing refractive index A = 1.47. This means that, for small  lues of w and for normal 
incidence (b,, = 0), we should have c(dk..,/dw) = 3 = 1.47, which is indeed what 
is obtained from figure 3. 

Flgurr S. ?tansmitrance velsus frequency a m e s  
(-1 of EM waves incident normally on a slab 
oi (a) one, @) two and (c) four layers, parallel 
to the (001) surface of a FE composite crystal. 
?he uystal is mnstituted of spheres of dielectric 
mnsranf CM = 9.3636 in vacuum with a volume 
coverage b = 0.3791. ?he transmittance of the 
corresponding homogeneous slabs with 7 = 2.16 
is shown bj dotted curves. 

Of the frequency bands in figure 3, four, shown by full curves, are doubly de- 
generate (A, symmetry) and correspond to two different, mutually orthogonal polar- 
izations of the electric field. The remaining six bands, shown by broken curves, are 



Seatiering of EM waves by periodic sImcIures 7397 

non-degenerate and of A,, A,, A;, A;-type symmetry. Whatever the symmetry of 
the non-degenerate bands, the g = 0 component of the corresponding eigenmodes 
of the EM field (the Bloch waves described by (6)) vanishes. Non-degeneracy and the 
trallSVerse nature of the EM field demand that this be so for any one of these sym- 
metries. This has an important consequence in relation to scattering of plane waves 
incident normally on a slab of the crystal. Because the g = 0 beam is the only one 
which matches a propagating wave outside the crystal, the incident wave cannot excite 
an internal mode with a vanishing g = 0 component, and the incident wave will be 
totally reflected; there will be no transmission of light through the slab, assuming of 
course that no other bands with a non-vanishing g = 0 component exist at the given 
frequency. This is the case for the top band in figure 3 and the same applies to the 
top sections of the two bands immediately below the top band. This is shown clearly 
in figure 3 where the transmittance of light incident normally on a slab of eight layers 
is plotted versus frequency. It is seen there that no light is transmitted through the 
slab when a w / c  > 5.3. We note that the symmetry argument breaks down when 
Itll $ 0, and transmission increases gradually with light incident at an angle. This 
can he seen from figures 4 and 6. It may be that the phenomenon of rigorously 
vanishing Uansmittance when light is incident normally on a given surface can be 
of use in technological applications, apart from being an interesting phenomenon in 
itself. The A, bands (full curves in figure 3) couple to incident EM waves. We see 
in figure 3 that, when an WI wave is incident normally on a slab of eight layers, it 
is almost totally transmitted through the slab if the frequency lies within one or the 
other of the A 5  bands and almost totally reflected when its frequency lies within a 
frequency gap. It is evident (see also figure 5) that the discreteness of the transmis- 
sion spectrum for w a / c  > 3 is replaced by an almost continuous spectrum as the 
thichess (number of layers in the slab) increases. We note that the two eigenmodes 
of the doubly degenerate A, band couple respectively to the two different, mutually 
orthogonal polarizations of the incident field, leading to identical transmission spectra 
for the two polarization directions. 

The oscillations of the transmission coeficient shown in figure 3 in the lower- 
frequency range of the spectrum where an effective-medium approximation is more 
or less valid result from interference between the waves reflected at the two surfaces 
of the slab and are well understood [ S I .  In the same figure we show by a dotted curve 
the transmittance evaluated for a corresponding homogeneous slab with 7 = 2.16 and 
thickness given by the number of layers times the z component of a3 (see figure 1). 
We see the agreement in the lower-energy range of the spectrum. The disagreement 
in the higher-frequency range is also evident 

In figure 5 we show the transmission spectra for slabs which are one layer, two 
layers and four layers thick. It is clear that for these thinner slabs the fiequency bands 
of the infinite crystal provide only a rough guide to the transmission spectrum, and yet 
it is remarkable that the transmittance of two layers or even that of one layer exhibits 
features which can be understood in terms of the photonic complex band structure 
of the infinite crystal. We note in particular that transmission through the slab when 
the frequency of the incident wave ties within a frequency gap is determined by the 
imaginary component of k,(w;kl l )  and is therefore larger when Im{kz(w; kl,)} is 
smaller. This can be seen quite clearly in the case of the two-layer slab. In the 
gap immediately below w a / c  E 4 ,  the imaginary component of kz is on the average 
smaller than in the corresponding gap above w a / c  N 4 as shown in figure 3, and 
therefore we expect transmission Over the frequency range of the lower gap to be 
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Lua / c  
Flgure 6. Ttansmittance versus frequency curves of EM waves incident on a slab of eight 
layers parallel IO Ihe (001) surface of a FCC mmposile ayslal wilh kll = (2rla)fi (0.2, 
0.1) for (a) s and (b) p polarization. The aysal is wnstitutd of spheres of dielectric 
mnslant CM = 9.3636 in vacuum with a volume mverage b = 0.3791. 

larger than that of the higher-frequency gap. This is indeed the case as can be seen in 
figure 5. For a four-layer slab, transmission is reduced to zero in the higher-frequency 
gap, but not so in the lower gap where it is small but certainly not negligible. For 
comparison the transmittance of the corresponding homogeneous slabs with 7 = 2.16 
is also shown in figure 5 by the dotted curves. 

Let us now comment briefly on our results in relation to light incident at an angle 
on the (001)-faced slab of our composite crystal. The complex band structure for the 
chosen point in the SBZ, k,, = ( 2 7 r / a ) a  (0.2, O.l), is shown in figure 4. None of 
the bands is degenerate and none can be described as s or p polarized in the sense 
usually given to these expressions, meaning a well defined polarization direction of 
the associated electric field (in the surface of the slab for s, and in the plane of 
incidence for p polarization). The imaginary part of k, (w;  kll) of the important real 
frequency lines (those which determine the attenuation of light in the slab) is shown 
by dotted curves over the frequency range of their respective frequency gaps. 
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The lowest eigenfrequency w,, for the given kll can be estimated assuming that 
the effective-medium approximation is valid as IC, i 0. We then have w,, = (c/z)ICl l .  
Substituting for the previously found value (K= 1.47) we lind that w o a / c  = 1.35, 
which Lies very near the value of w,a/c = 1.33, obtained from figure 4. 

We show the transmission coefficient of s-polarized light as a function of frequency 
for the given kll in figure 6(a), and the corresponding spectrum for p-polarized light in 
figure q b ) .  Firstly we note the considerable transmission above a w / c  = 5.3, where 
there was none for normal incidence, the origin of which we have already explained. 
Then we observe that the oscillations of the transmittance curve in the lower-energy 
part of the spectrum are different for s- and p-polarized light, which again is what 
one expects from traditional effective-medium theory. Finally, we ObSeNe that for 
incidence at an angle the transmittance ewes are much more complicated than in the 
case of normal incidence. We cannot now say that the transmission coefficient equals 
unity if the frequency of the incident wave lies within one of the frequency bands. 
Knowledge of the frequency bands does not by itself determine the transmission 
coefficient in the present case. For example we note that an s-polarized wave transmits 
only to a small extent in the W U / C  range from 4.3 to 4.7, whereas a p-polarized wave 
transmits to a much larger extent over the Same region of frequencies. 

4. Conclusion 

In conclusion, we may say that, in order to analyse fully the results of experiments 
relating to the reflection and transmission of EM waves by slabs of composite crystals, 
we need to go beyond the calculation of the frequency bands of the WI field in the 
aystal. It is not necessary to calculate the complex band structure in each case as we 
have done here. It is sufficient to calculate the reflection and transmission matrices of 
the slab, and we have shown how this can be done when the slab consists of identical 
layers. However, knowing the complex band structure of the EM field is always helpful 
in the interpretation of one’s results. We pointed out the interesting phenomenon 
of vanishing transmittance for normal incidence, when the corresponding frequency 
band in the aystal is non-degenerate. Finally, we should say that the method that 
we described applies equally well, when the dielectric function of the spheres or the 
host space varies with the frequency (the spheres can be metallic for example). Also 
the doubling-layer method can be easily extended to the case when successive layers 
are different from each other, as long as they have the same periodic arrangement in 
the plane of the surface. 
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